三角形的内角和说课稿

时间:2024-10-07 15:33:24
三角形的内角和说课稿

作为一名人民教师,常常要根据教学需要编写说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。优秀的说课稿都具备一些什么特点呢?下面是小编为大家收集的三角形的内角和说课稿,欢迎大家分享。

三角形的内角和说课稿1

《三角形的内角和》说课稿

  一、 说教材:

今天我说课的内容是小学数学人教版实验教材四年级下册的《三角形的内角和》。三角形的内角和是180°是三角形的一个重要性质,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何知识的基础。三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形。学生对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,还认识了三角形的特性,知道三角形任意两边之和大于第三边以及三角形的分类等有关三角形的知识。这些都是学生感受、理解、抽象“三角形的内角和”的概念的基础。我们把握好“三角形的内角和是180°”这部分内容的教学不仅可以加深学生对三角形特征的理解,发展学生的空间观念,而且可以通过动手操作,获取新知,发展学生的思维能力和解决实际问题的能力。同时也为以后学习更复杂的几何图形知识打下坚实的基础。

  二、说教学目标:

1、知识目标:知道三角形内角和是180°。

2、能力目标:①通过学生测量、撕拼、折叠、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。

②能运用三角形内角和是180°这一规律解决实际问题。

3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;

②体验探索的乐趣和成功的快乐,增强学好数学的信心。

  三、说重点和难点:

重点:探索和发现三角形内角的度数和等于180°。

难点:通过小组讨论、动手操作等方式,让学生自己探索和发现三角形内角的度数和等于180°,并能应用这一规律解决实际问题。

四、说教法和学法:

新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验。因此,我主要采用的教学方法是:直观教学法和动手操作实验法。在教学中,根据学生的年龄特征,整节课我以学生为主的 “活动教学”贯穿全过程。设计有独立活动、同桌活动及分小组活动。在具体活动中,虽然小学生的遗忘性较强,但不得不承认学生已学过了三角形的内角和,所以一开始我大胆放手让学生说,从学生说中导入故事,“三角形三兄弟的争吵”,引出与学生要学习的内容——三角形的内角,然后设疑:三角形内角和是多少?由于学生在小学学过这样的知识,所以很轻松地就可以答出。所以我直接让学生分小组讨论:有什么办法可以验证得出这样的结论。让学生大胆猜想,自主探索三角形的内角和。再通过测量、拼折、验证等方式让学生确定三角形内角和是180度。这样,既培养了学生的观察能力和归纳概括能力,又培养了学生动手操作能力和创新精神。

五、 说教学过程:

本节课的教学过程我设计了六个教学环节:一是创设情境,导入新课;二是自主探究,证实规律;三是应用延伸,解决问题;四是深化思维,拓展知识;五是课堂总结;六是作业布置。下面就具体的教学环节说说我的设想。

(一)创设情境,导入新课:

教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。开始上课,我就大胆放手让学生说三角形的特性、分类等有关知识,从学生说中导入故事,“三角形三兄弟的争吵”,引出与学生要学习的内容——三角形的内角和,然后设疑:三角形内角和是多少?从而激发学生探究数学的愿望和兴趣。

(二)自主探究,证实规律:

1、理解标目:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,所以一开始我先不急于动手探索,先让学生明白什么是三角形的内角和。

2、 猜想:目标明确后,我就让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。

3、 验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量量、拼一拼、折一折――说说、议议――小结。

4、 巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:根据普遍三角形两个角求一个角,根据特殊的三角形求出三角形的三个角的度数{具体在练习一,第二、应用延伸练习一中都有体现},从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

5、 拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。

6、说课堂总结

采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?你有什么收获?(2)看书设疑。充分发挥学生的主体意识,培养学生的语言概括能力。

六.说教学板书

这是一节操作课,学生要掌握的概念较少,所以整个板书我以表格为主,主要把学生大量的验证成果展示出,让学生亲自动手后再通过观察,一目了然,得出结论——三角形的内角和是180度。简间但又层层涉及,形式活泼,色彩也较丰富。

总之,本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。

三角形的内角和说课稿2

一、教学目标

课程 ……此处隐藏27888个字……的全过程中去探索、研究、发现、形成。

二、教材分析与处理:

三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

三、学生分析:

处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

四、教学目标:

1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

五、重难点的确立:

1.重点:三角形的内角和定理探究与证明。

2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

六、教法、学法和教学手段:

采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。

采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。

七、教学过程设计:

(一)、创设情境,悬念引入

一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。

具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。

(二)、探索新知

1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。

(将拼图展示在黑板上)

2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。

3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

4.学以致用,反馈练习

(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?

解:∵∠A+∠B+∠C=180°(三角形内角和定理)

∴∠B+∠C=100°在△ABC中,

(2)已知:∠A=80°,∠B=52°,则∠C=?

解:∵∠A+∠B+∠C=180°(三角形内角和定理)

又∵∠A=80°∠B=52°(已知)

∴∠C=48°

(3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?

(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?

(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?

解:设∠A=x°,则∠B=3x°,∠C=5x°

由三角形内角和定理得,x+3x+5x=180

解得,x=20

∴∠A=20°∠B=60°∠C=100°

(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?

第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。

通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。

5.巩固提高,以生为本

(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。

(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。

本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用.能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。

6.思维拓展,开放发散

如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

(三)、归纳总结,同化顺应

1.学生谈体会

2.教师总结,出示本节知识要点

3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

(四)、作业:

1、必做题:习题3.1第10、11、12题

2、选做题:习题3.1第13、14题

(五)、板书设计

三角形内角和

学生拼图展示

已知:

求证:

证明:

开放题:

《三角形的内角和说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档